Finite Element Analysis of Nylon Based 3D Printed Autonomous Underwater Vehicle Propeller
نویسندگان
چکیده
منابع مشابه
OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملAutonomous Underwater Vehicle Systems
To understand the physical and biological relationships often requires high resolution sampling far exceeding present capabilities. If spatially adaptive sampling can be developed, data resolution can be greatly improved over that presently possible with conventional sensor platforms. One technique to achieve both spatially and temporally adaptive sampling is an Autonomous Oceanographic Samplin...
متن کاملAutonomous Underwater Vehicle Navigation
This paper surveys the problem of navigation for autonomous underwater vehicles (AUVs). Marine robotics technology has undergone a phase of dramatic increase in capability in recent years. Navigation is one of the key challenges that limits our capability to use AUVs to address problems of critical importance to society. Good navigation information is essential for safe operation and recovery o...
متن کاملDesign of Autonomous Underwater Vehicle
There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle) were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental pro...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Research
سال: 2020
ISSN: 1980-5373,1516-1439
DOI: 10.1590/1980-5373-mr-2020-0236